SA WG2 Temporary Document

Page 4

SA WG2 Meeting #127bis
S2-184744
28 May - 1 June 2018, Newport Beach, USA
(revision of S2-18xxxx)
Source:
Deutsche Telekom

Title:
Solution proposal “SBA with stateless and unsticky services” to address key issue “Architectural support for highly reliable deployments”
Document for:
Approval

Agenda Item:
6.19

Work Item / Release:
FS_eSBA / Rel-16

Abstract of the contribution: This contribution proposes a solution that addresses key issue "Architectural support for highly reliable deployments” with a SBA that is based on stateless and unsticky services.
1 Introduction

2 Proposal

This document proposes to add following solution addressing key issue “Architectural support for highly reliable deployments” to TR 23.742.
* * * Start of Change 1 (ALL TEXT IS NEW)* * *

6.x Solution #X: SBA with stateless and unsticky services
6.x.1 Introduction
This solution addresses key issues 4 “Architectural Support for Highly Reliable Deployments”.
When the 5G system is deployed in the cloud, the overall reliability of the system shall be at least at the same level as non-cloud implementations / deployments. In a typical cloud environment, NFs or NF services may fail at any time and in general more frequently than traditional network nodes. For this reason, the 5G system shall be able to deal with the unexpected loss of NF instances / NF services instances in a way that avoids impact on the customer service or detrimental side effects on the network (e.g. signalling storms) when such failures occur.
Unexpected loss of NF instances/NF service instances leads to system and / or customer service impact when the failed instance has active bindings (e.g. tightly coupled UE-specific information) with other NF instances / NF service instances. This might require the standardisation of complex recovery mechanisms to return to normal operation while minimising end user service impact.

Such complex mechanisms would have to include the transfer of the failed instance’s load / service contexts to other existing instances or to newly instantiated “replacement” NF / NF service instances. This may cause limitations to network automation, e.g. when
· newly instantiated NFs / NF services that replace the failed instance need to be specifically configured to act as replacement for the failed instance
· existing NFs / NF services need to be specifically configured to integrate the newly instantiated NFs / NF services as the replacement of the failed instance
· existing NFs / NF services need to be specifically configured to take over for the failed instance

· previously existing bindings and / or service contexts have to be restored and be moved to existing or the new instance(s).
It should be noted that the restoration of pre-existing bindings or service contexts might not be possible in many cases, i.e. the recovery procedure implies the loss of the bindings or service contexts.

In the following clauses, a solution is presented that avoids the above issues and does not require the specification of complex recovery procedures that would probably have to be specific per NF / NF service type and / or failure scenario.
6.x.2 High level description

The solution proposed here contains two main aspects to address the above issues.
· specifying the NFs / NF services as “unsticky” so that long-living bindings between NF / NF service instances are avoided
· specifying the NFs / NF services as “stateless” (separation of compute and storage resources), i.e. NF / NF service instances store state / service context information in an external storage layer (e.g. UDM/UDR) when the state / service context is stable (e.g. at the completion of a transaction)

Thereby, failed instances can effortlessly be replaced by newly instantiated or already existing ones, which can then promptly recover the stored state / service context from the storage layer when and as needed.

6.x.2.1 Issues related to long-living bindings between NFs / NF services
Today the UE gets assigned serving NFs (e.g. based on the UE’s location). The UE will continue to be served by these NF instances until a trigger to re-allocate a serving NF occurs (e.g. UE moves out of the service area of its current serving NF instance(s)). Thereby bindings are created between the UE and its serving NF instances, and orderly re-bindings (i.e. change of serving NF instance) can only occur by system procedures (e.g. mobility) specified in 3GPP.

In the Rel-15 5GC, serving instances of AMF, SMF, SMSF and PCF are selected per UE. This creates UE specific bindings between the selected AMF, SMF, SMSF and PCF NF instances.
Furthermore, the identities of the serving NFs are stored in the UDM/UDR, which creates another set of bindings in the 5GC.

Loss of any of the UE’s serving instances destroys the associated bindings and thereby breaks the UE’s service context environment in the network, causing the correlated customer service to fail.

In a cloudified 5G system, a long-living binding to a dedicated NF or NF service instance always means a long-living binding to a dedicated SW instance that represents the NF / NF service. Consequently, the above system and service impact would occur any time a SW instance is lost (e.g. due to HW failure or SW bug).

A summary of identified problems and challenges with long-living bindings in the cloud (non-exhaustive list) can be given as follows:
· complex scaling operations across the network:

· when scaling out

· make the new instances known to other services to ‘start using them’, this leads to high configuration effort
· need to transfer bindings from already existing instances to new ones, this leads to the need for complex reallocation procedures

· when scaling in

· make other instances aware that the to-be-removed instance shall no longer be used

· transfer bindings to other instances or await orderly unbinding (e.g. UE detaches)
· need for load-(re)balancing:
· with long-living bindings a load distribution for new bindings has to be done

· in case of unequal load of service instances a dedicated re-distribution of load, implying transfer of the binding(s), has to be done (additional load re-distribution mechanism needed)

· in case of failure:

· customer impact is likely in case of service instance failure

· reallocation (transfer of bindings) similar to scale-in but additional challenges need to be handled due to the “unexpected scale in”
· complex configuration or complex automation procedures
6.x.2.2 Issues related to stateful NFs
A typical NF / NF service is defined by its service logic (executed by a compute resource) and some service context data (located in a storage resource) on which the service logic is applied. Both the service logic and the service context data are well-defined in 3GPP specifications for the 5G system.

Historically, 3GPP network entities retain service contexts locally even when they are not used, i.e. not currently being subject to service logic processing.

If a NF / NF service instance holds unused service context information (e.g. a UE’s MM context) internally (i.e. compute and storage resources are not separated) and the instance becomes unavailable (due to HW or SW failure) the service context data is lost and the customer’s service is impacted.

Identified problems and challenges with NF / NF service internal storage of service context information in the cloud are similar to the issues listed in relation of long-living bindings, as also the service contexts need to be managed in a similar way to the bindings and case of scaling, load (re-)balancing or failure recovery. In addition, local storage of service contexts within NF instances / NF service instances limits the use of such context data by other entities as it is necessary to have knowledge about the location of the desired context data within a specific NF instance / NF service instance.
6.x.2.3 Solution Preconditions, Assumptions and Requirements

Preconditions:

· the 5G system is made up a suitable set of 3GPP defined “modules” (NFs and/or NF services) that allow fast spin-up and teardown of instances.

Assumptions:

· There exists a suitable storage layer that can be used by all relevant NF / NF service instances for storing and retrieving service context data.

· The service context data stored in the storage layer corresponds to the 3GPP defined NF / NF service context data that a NF / NF service processes when applying its service logic.
· Adequate reliability and availability of the storage layer can be achieved and is realised by methods internal to the storage layer.

Note: the existence of NFs and/or NF services in Rel-16 is determined under key issue 1.

Requirements:

· The service context information that is stored in the storage layer shall be structured and standardised in 3GPP, similar to e.g. a UE context that is passed between AMFs during a relocation procedure.
6.x.2.4 High-level Solution Architecture
It is proposed that
· Any available instance of a requested NF/NF service type can handle an incoming message dedicated to that service, that means

· NF instance/NF service instances do not store other instance’s IDs for sub-sequent requests

· Requests by service consumers do not contain NF instance/NF service instance IDs but only the type of the requested service
· How the NF instance/NF service instance that shall handle a particular request is selected or if and by who it needs to be selected depends on the inter-NF / NF service communication method (cf. key issue 3) and is out of scope of this solution.

· When the service context information reaches stable state it shall be stored in a storage layer external to the service instance; that means

· Any authorized service instance of the same or different type can access the service context data
· Any authorized 3rd party service may access that data
Examples of service context information are:

· Subscription -, policy –and application specific data.

· Mobility management data

· Session/context data (related to user subscription and its UE session-, registration-and connection state.)
· standardized or exchanged as part of standardized NF service interfaces with other NFs. Represents a stable state, that can be recovered/re-created by a NF service in failure scenarios.
Dependencies to other solutions to key issues:

· Solution X [S2-184816] in the key issue 3 “Improvements to Service Framework” relies on the unstickiness and the statelessness of service instances (see section 6.x.2.3. [S2-184816] pre-condition).
6.x.3 Services and illustrated Procedures

Editor's note: This clause describes services and related high-level procedures for the solution.

6.x.4 Impacts on existing Services and Interfaces

Editor's note: Further details regarding impacts are FFS.

6.x.5 Evaluation of the Solution

Editor's note: This clause provides an evaluation of the solution.

End of changes (all new text)

3GPP

SA WG2 TD

